Abstract
Flavin with defined helical self-assembly helps to understand chemical designs for obtaining high-purity semiconducting (s)-single-walled carbon nanotubes (SWNT) in a diameter (dt)-selective manner for high-end applications. In this study, flavins containing 8, 12, 16, and 20 n-alkyl chains were synthesized, and their single/tandem effects on dt-selective s-SWNT dispersibility were investigated at isomolarity. Flavins with n-dodecyl and longer chain lengths (FC12, FC16, and FC20) act as good surfactants for stable SWNT dispersions whereas n-octyl flavin (FC8) exhibits poor dispersibility owing to the lack of SWNT buoyancy. When used with small-dt SWNT, FC8 displays chirality-selective SWNT dispersion. This behavior, along with various flavin helical motifs, prompts the development of criteria for ‘side chain length (lS)’ required for stable and dt-selective SWNT dispersion, which also explains lS-dependent dt-enrichment behavior. Moreover, SWNT dispersions with flavins with dodecyl and longer lS exhibit increased metallic (m)-SWNT, background absorption-contributing carbonaceous impurities (CIs) and preferential selectivity of s-SWNT with slightly larger dt. The increased CIs that affect the SWNT quantum yield were attributed to a solubility parameter. Furthermore, the effects of flavin lS, sonication bath temperature, centrifugal speed, and surfactant concentration on SWNT purity and s-/m-SWNT ratio were investigated. A tandem FC8/FC12 provides fine-tuning of dt-selective SWNT dispersion, wherein the FC8 ratio governs the tendency towards smaller dt. Kinetic and thermodynamic assemblies of tandem flavins result in different sorting behaviors in which wide dt-tunability was demonstrated using kinetic assembly. This study highlights the importance of appropriate side chain length and other extrinsic parameters to obtain dt-selective or high-purity s-SWNT.
Funder
National Research Foundation of Korea
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献