The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube

Author:

Park Minsuk,Hwang Seongjoo,Ju Sang-YongORCID

Abstract

Flavin with defined helical self-assembly helps to understand chemical designs for obtaining high-purity semiconducting (s)-single-walled carbon nanotubes (SWNT) in a diameter (dt)-selective manner for high-end applications. In this study, flavins containing 8, 12, 16, and 20 n-alkyl chains were synthesized, and their single/tandem effects on dt-selective s-SWNT dispersibility were investigated at isomolarity. Flavins with n-dodecyl and longer chain lengths (FC12, FC16, and FC20) act as good surfactants for stable SWNT dispersions whereas n-octyl flavin (FC8) exhibits poor dispersibility owing to the lack of SWNT buoyancy. When used with small-dt SWNT, FC8 displays chirality-selective SWNT dispersion. This behavior, along with various flavin helical motifs, prompts the development of criteria for ‘side chain length (lS)’ required for stable and dt-selective SWNT dispersion, which also explains lS-dependent dt-enrichment behavior. Moreover, SWNT dispersions with flavins with dodecyl and longer lS exhibit increased metallic (m)-SWNT, background absorption-contributing carbonaceous impurities (CIs) and preferential selectivity of s-SWNT with slightly larger dt. The increased CIs that affect the SWNT quantum yield were attributed to a solubility parameter. Furthermore, the effects of flavin lS, sonication bath temperature, centrifugal speed, and surfactant concentration on SWNT purity and s-/m-SWNT ratio were investigated. A tandem FC8/FC12 provides fine-tuning of dt-selective SWNT dispersion, wherein the FC8 ratio governs the tendency towards smaller dt. Kinetic and thermodynamic assemblies of tandem flavins result in different sorting behaviors in which wide dt-tunability was demonstrated using kinetic assembly. This study highlights the importance of appropriate side chain length and other extrinsic parameters to obtain dt-selective or high-purity s-SWNT.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3