Significance of Hydroxyl Groups on the Optical Properties of ZnO Nanoparticles Combined with CNT and PEDOT:PSS

Author:

Nagpal KeshavORCID,Rauwel ErwanORCID,Estephan EliasORCID,Soares Maria Rosario,Rauwel ProtimaORCID

Abstract

We report on the synthesis of ZnO nanoparticles and their hybrids consisting of carbon nanotubes (CNT) and polystyrene sulfonate (PEDOT:PSS). A non-aqueous sol–gel route along with hydrated and anhydrous acetate precursors were selected for their syntheses. Transmission electron microscopy (TEM) studies revealed their spherical shape with an average size of 5 nm. TEM also confirmed the successful synthesis of ZnO-CNT and ZnO-PEDOT:PSS hybrid nanocomposites. In fact, the choice of precursors has a direct influence on the chemical and optical properties of the ZnO-based nanomaterials. The ZnO nanoparticles prepared with anhydrous acetate precursor contained a high amount of oxygen vacancies, which tend to degrade the polymer macromolecule, as confirmed from X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, a relative increase in hydroxyl functional groups in the ZnO-CNT samples was observed. These functional groups were instrumental in the successful decoration of CNT and in producing the defect-related photoluminescence emission in ZnO-CNT.

Funder

Archimedes Foundation

Parrot

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3