On-Chip Optical Adder and Differential-Equation-Solver Based on Fourier Optics and Metasurface

Author:

Chen YutaiORCID,Chen Huan,Ma Hansi,Zhang ZhaojianORCID,Xie Wanlin,Li Xin,Chen Jian,Yang Junbo

Abstract

Analog optical computing (AOC) has attracted great attention over the past few years, because of its ultra-high speed (potential for real-time processing), ultra-low power consumption, and parallel processing capabilities. In this article, we design an adder and an ordinary differential equation solver (ODE) on chip by Fourier optics and metasurface techniques. The device uses the 4f system consisting of two metalenses on both sides and one middle metasurface (MMS) as the basic structure. The MMS that performs the computing is the core of the device and can be designed for different applications, i.e., the adder and ODE solver in this article. For the adder, through the comparison of the two input and output signals, the effect of the addition can be clearly displayed. For the ODE solver, as a proof-of-concept demonstration, a representative optical signal is well integrated into the desired output distribution. The simulation result fits well with the theoretical expectation, and the similarity coefficient is 98.28%. This solution has the potential to realize more complex and high-speed artificial intelligence computing. Meanwhile, based on the direct-binary-search (DBS) algorithm, we design a signal generator that can achieve power splitting with the phase difference of π between the two output waveguides. The signal generator with the insertion loss of −1.43 dB has an ultra-compact footprint of 3.6 μm× 3.6 μm. It can generate a kind of input signal for experimental verification to replace the hundreds of micrometers of signal generator composed of a multi-mode interference (MMI) combination used in the verification of this type of device in the past.

Funder

National University of Defense Technology

National Natural Science Foundation of China

Program for New Century Excellent Talents in University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-high NA optical image differentiator based on dielectric metasurfaces;Optics Communications;2024-02

2. On-Chip Spatial Hilbert Transformer Based on Fourier Optics and Metasurface;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

3. Efficient dual-wavelength metasurface for second-order differential edge detection in the ultraviolet;Applied Optics;2023-11-02

4. Electromagnetic Spatiotemporal Differentiation Meta‐Devices;Laser & Photonics Reviews;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3