Interactions between ZnO Nanoparticles and Polyphenols Affect Biological Responses

Author:

Kim Su-Bin,Yoo Na-Kyung,Choi Soo-JinORCID

Abstract

Zinc oxide (ZnO) nanoparticles (NPs) are used as a food additive Zn supplement due to the role of Zn in biological functions. They are directly added to complex processed foods or Zn-fortified functional foods. Hence, the interactions between ZnO NPs and nutritional or functional components can occur. In this study, the effects of ZnO NP interactions with two polyphenols (quercetin and rutin) on cytotoxicity, antioxidant activity, ex vivo intestinal absorption, and solubility were evaluated. Moreover, the characterization on the interactions was carried out by analyzing crystallinity, surface chemical bonding, chemical composition, and surface chemistry. The results demonstrate that the interactions caused higher cytotoxicity, ex vivo intestinal transport, and solubility of ZnO NPs than pristine ZnO NPs but did not affect antioxidant activity nor intestinal absorption of the polyphenols. The interaction effects were more evident by ZnO NPs interacted with quercetin than with rutin. The crystallinity of ZnO NPs was not influenced, but the degree of exposure of the chemical bondings, elemental compositions, and chemical group intensities on the surface of ZnO NPs, quercetin, or rutin were quenched or decreased to some extent by the interactions, especially by ZnO NPs interacted with quercetin. It is, therefore, concluded that the interactions affect chemical characteristics and surface chemical sates of ZnO NPs, quercetin, or rutin, which can cause high cytotoxicity, intestinal absorption, and solubility of ZnO NPs. Further study is required to elucidate the mechanism of action of the interactions.

Funder

National Research Foundation of Korea

Ministry of Food and Drug Safety

Seoul Women’s University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3