Abstract
Hole transport layers (HTLs) with high conductivity, charge extraction ability, and carrier transport capability are highly important for fabricating perovskite solar cells (PSCs) with high power conversion efficiency and device stability. Low interfacial recombination between the HTL and perovskite absorber is also crucial to the device performance of PSCs. In this work, we developed a three-stage method to prepare NiOx nanoflakes as the HTL in the inverted PSCs. Due to the addition of the nanoflake layer, the deposited perovskite films with larger grain sizes and fewer boundaries were obtained, implying higher photogenerated current and fill factors in our PSCs. Meanwhile, the downshifted valence band of the NiOx HTL improved hole extraction from the perovskite absorber and open-circuit voltages of PSCs. The optimized device based on the NiOx nanoflakes showed the highest efficiency of 14.21% and a small hysteresis, which outperformed the NiOx thin film as the HTL. Furthermore, the device maintained 83% of its initial efficiency after 60 days of storage. Our results suggest that NiOx nanoflakes provide great potential for constructing PSCs with high efficiency and long-term stability.
Funder
the Ministry of Science and Technology (MOST), Taiwan
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献