Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy

Author:

Wu Jing-Hao,Meng Yan-Long,Li Yang,Li Yi,Li Yan-Song,Pan Gui-Ming,Kang Juan,Zhan Chun-Lian,Gao Han,Hu Bo,Jin Shang-Zhong

Abstract

In this study, we investigated an absorber based on a center-aligned tandem nanopillar array for ultra-broadband solar energy harvesting theoretically. A high-efficiency, omnidirectional absorber was obtained by introducing the center-aligned tandem nanopillar array embedded in an Al2O3 dielectric layer. The multi-coupling modes at different wavelengths were interpreted. The strong absorption can be adjusted by changing the radii and heights of nanopillars. According to the simulation results, the average absorptance of the absorber exceeded 94% in the wavelength range from 300 nm to 2000 nm. In addition, the high-efficiency absorption was insensitive to the incident angle and polarization state. The research not only proposed an absorber which possesses a huge potential value for application areas, such as thermal photovoltaic systems, infrared detection, and isotropic absorption sensors, but also pointed out a new way to design an absorber with high efficiency in an ultrabroad wavelength range.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-broadband metamaterial absorber for collecting electromagnetic waves from the ultraviolet to the mid-infrared;International Journal of Thermal Sciences;2024-09

2. Solar energy broadband capturing by metamaterial absorber based on titanium metal;The Journal of Chemical Physics;2024-04-22

3. Perfect Metamaterial Absorber for K-band Application;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

4. Ultra-wideband solar absorber based on double-polygonal metamaterial structures;Photonics and Nanostructures - Fundamentals and Applications;2024-02

5. Wide-Angle Broadband Solar Absorber Based on Multilayer Etched Toroidal Structure;Plasmonics;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3