Controlling CNT-Based Nanorotors via Hydroxyl Groups

Author:

Zhang Boyang,Li RuiORCID,Peng QingORCID

Abstract

Nanomotor systems have attracted extensive attention due to their applications in nanorobots and nanodevices. The control of their response is crucial but presents a great challenge. In this work, the rotating and braking processes of a carbon nanotube (CNT)-based rotor system have been studied using molecular dynamics simulation. The speed of response can be tuned by controlling the ratio of hydroxyl groups on the edges. The ratio of hydroxyl groups is positively correlated with the speed of response. The mechanism involved is that the strong hydrogen bonds formed between interfaces increase the interface interaction. Incremental increase in the hydroxyl group concentration causes more hydrogen bonds and thus strengthens the interconnection, resulting in the enhancement of the speed of response. The phonon density of states analysis reveals that the vibration of hydroxyl groups plays the key role in energy dissipation. Our results suggest a novel routine to remotely control the nanomotors by modulating the chemical environment, including tuning the hydroxyl groups concentration and pH chemistry.

Funder

Fundamental Research funds for the Central Universities

LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3