Performance Research and Formulation Optimization of High-Performance Local Insulation Spray Coating Materials

Author:

Liu HechenORCID,Wei LiweiORCID,Gao Fengsheng,Tang Li,Li Le,Sun ZhanglinORCID,Liu YunpengORCID,Dong Peng

Abstract

Bird pest control has become a major task for the operation and maintenance of distribution network lines. Epoxy resin that cures quickly at room temperature can be used to coat locations where birds frequently build their nests. However, epoxy resin has enormous internal stress and is brittle, so it is essential to toughen it. In this paper, for a room temperature curing system composed of polyurethane-modified epoxy resin and a polythiol curing agent, three kinds of particles, i.e., Al2O3, SiO2, and Mg(OH)2, were used to modify a polyurethane modified epoxy resin. Orthogonal experiments were designed to study the effects of different fillers on the comprehensive properties of polyurethane-modified epoxy resins. The experimental results showed that there were not only independent effects of different kinds if particles on the resin, but also synergistic effects of multiple particles. Nanoparticles can reduce the defects introduced by microparticles to a certain extent and improve the mechanical and electrical properties of the resin. The overall performance of the resin was optimized when the amounts of SiO2, Al2O3, and Mg(OH)2 were 1.7%, 2.5%, and 7%, respectively. The tensile strength of the resin was increased by 70%, the elongation at a break by 67.53%, and the breakdown strength by 20.31% compared with before the addition of filler. The microscopic morphology and thermal properties of the resin before and after the addition of filler were also studied. Adding fillers caused more cracks to absorb part of the energy when the resin matrix was stressed and increased the rigidity of the resin matrix and the resin’s glass transition temperature (Tg) by 13.48 °C. Still, the temperature corresponding to the maximum rate of weight loss (Tmax) remained unchanged.

Funder

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference38 articles.

1. Analysis of the causes of bird damage fault in distribution lines and prevention and control measures;Zhang;Oil Gas Field Ground Eng.,2018

2. Analysis of the causes of bird damage and preventive measures;Hao;Power Saf. Technol.,2007

3. Research and practice of anti-bird damage technology for transmission lines;Miao;Zhejiang Electr. Power,2007

4. Analysis of bird damage on transmission lines and its prevention and control;Ding;Jiangxi Electr. Power,2007

5. Research on the Causes of Bird Damage in North China Power Grid and the Method of Class Zoning;Yang;PHD Dissertation,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3