Solvent-Free Fabrication of Thick Electrodes in Thermoplastic Binders for High Energy Density Lithium-Ion Batteries

Author:

Kim Han-Min,Yoo Byeong-Il,Yi Jin-Woo,Choi Min-JaeORCID,Yoo Jung-KeunORCID

Abstract

The rapid development of electric vehicles has generated a recent demand for high energy density lithium-ion batteries (LIBs). One simple, effective way to enhance energy density of LIBs is to increase the thickness of electrodes. However, the conventional wet process used to fabricate thick electrodes involves the evaporation of large amounts of organic solvents, which causes an inhomogeneous distribution of conductive additives and binders. This weakens the mechanical and electrochemical network between active materials, resulting in poor electrochemical performance and structural degradation. Herein, we introduce a new strategy to produce homogeneous thick electrodes by using a dry, solvent-free process. Instead of using a conventional PVDF (polyvinylidene fluoride) binder, we employed a phenoxy resin as the binder in dry process for the first time. This thermoplastic binder exhibits better ductile properties than PVDF in the way that it generates a uniform network structure that connects the active materials during the hot press process. This enables the production electrochemically stable electrodes without using organic solvents, which record capacity retention rates of 73.5% over 50 cycles at a 40 mg/cm2 of thick electrodes. By contrast, thick electrodes produced with a PVDF binder via wet processing only have a capacity retention rate of 21.8% due to rapid structural degradation.

Funder

National Research Council of Science and Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3