Abstract
The request for extremely low-temperature and short-time sintering techniques has guided the development of alternative ceramic processing. Atmosphere-assisted FLASH sintering (AAFS) combines the direct use of electric power to packed powders with the engineering of operating atmosphere to allow low-temperature conduction. The AAFS of nanometric Potassium Sodium Niobate, K0.5Na0.5NbO3, a lead-free piezoelectric, is of great interest to electronics technology to produce efficient, low-thermal-budget sensors, actuators and piezo harvesters, among others. Not previously studied, the role of different atmospheres for the decrease in FLASH temperature (TF) of KNN is presented in this work. Additionally, the effect of the humidity presence on the operating atmosphere and the role of the compact morphology undergoing FLASH are investigated. While the low partial pressure of oxygen (reducing atmospheres) allows the decrease of TF, limited densification is observed. It is shown that AAFS is responsible for a dramatic decrease in the operating temperature (T < 320 °C), while water is essential to allow appreciable densification. In addition, the particles/pores morphology on the green compact impacts the uniformity of AAFS densification.
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献