Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures

Author:

Felix Antonio Bernardo,Pacheco Monica,Orellana Pedro,Latgé AndreaORCID

Abstract

All-carbon systems have proven to present interesting transport properties and are often used in electronic devices. Motivated by recent resonant responses measured on graphene/fullerene junction, we propose coupled nanoribbons/carbon-nanotube heterostructures for use as charge filters and to allow tuned transport. These hybrid systems are engineered as a four-terminal device, and we explore multiple combinations of source and collector leads. The armchair-edge configuration results in midgap states when the transport is carried through top/bottom terminals. Such states are robust against the lack of perfect order on the tube and are revealed as sharp steps in the characteristic current curves when a bias potential is turned on. The zigzag-edge systems exhibit differential negative resistance, with features determined by the details of the hybrid structures.

Funder

faperj

INCT de Nanomateriais de carbono

FONDECYT - Chile

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3