Effect of Pore Filling on Properties of Nanocomposites LiClO4–MIL–101(Cr) with High Ionic Conductivity

Author:

Uvarov NikolaiORCID,Ulihin Artem,Ponomareva Valentina,Kovalenko KonstantinORCID,Fedin Vladimir

Abstract

Experimental data on nitrogen adsorption, pellets density and ionic conductivity of nanocomposite solid electrolytes (1−x)LiClO4–xMIL-101(Cr) were interpreted in frames of the model of the composite in which the lithium salt fills the pores of a metal-organic framework MIL-101(Cr). According to the model, the concentration of lithium salt located in the pores reaches a maximum at the concentration x = xmax which is defined by a ratio of the molar volume of LiClO4 and the total volume of accessible pores in the MIL-101(Cr) framework. The model allows one to describe the dependences of pore volume and pellet density on the concentration of MIL-101(Cr). Conductivity of the composites were successfully described by two separate mixing equations for concentration ranges x < xmax and x > xmax. In the first concentration region x < xmax, the composite may be regarded as a mixture of LiClO4 and MIL-101(Cr) with completely filled pores accessible for LiClO4. At x > xmax, the total amount of lithium perchlorate is located in the pores of MIL-101(Cr) and occupies only part of the volume of the accessible pores. It was found that xmax value determined from the concentration dependence of conductivity (xmax = 0.06) is noticeably lower than the corresponding value estimated from adsorption data (xmax = 0.085) indicating a practically complete filling the pores of MIL-101(Cr) in the composite pellets heated before conductivity measurements.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Nanosized Oxides on Structural and Dynamic Properties of Composites Based on LiClO4;Bulletin of the Russian Academy of Sciences: Physics;2023-12

2. Hybrid Nanocomposite Solid Electrolytes (n-C4H9)4NBF4–MgO;International Journal of Molecular Sciences;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3