Cinchona officinalis Phytochemicals-Loaded Iron Oxide Nanoparticles Induce Cytotoxicity and Stimulate Apoptosis in MCF-7 Human Breast Cancer Cells

Author:

Al-Harbi Laila NaifORCID,Al-Shammari Ghedier M.ORCID,Subash-Babu PanduranganORCID,Mohammed Mohammed A.ORCID,Alkreadees Roaa Ahmed,Yagoub Abu ElGasim AhmedORCID

Abstract

The present study aimed to synthesize iron oxide nanoparticles loaded with quinine and alkaloids-rich Cinchona officinalis (Peruvian bark) stem bark extract, and further evaluate their cytotoxic effect and apoptosis mechanisms in MCF-7 breast cancer cells. Nanoparticles were prepared by biological reduction of iron oxide with Cinchona officinalis extract, using the green synthesis method. The nanoparticles were characterized by XRD, FT-IR, and UV-vis spectroscopy and transmission electron microscopy (TEM). In vitro cytotoxicity analyses of Cinchona officinalis extract, ferrous oxide, and Cinchona officinalis extract-loaded iron oxide nanoparticles (CO-NPs) were carried out using the MTT test for 24 h and 48 h. We found that CO-NPs reduced the MCF-7 cell viability with IC50 values of 16.2 and 9 µg/mL in 24 h and 48 h, respectively. In addition, CO-NPs were tested with normal hMSCs to determine their toxicity, and we did not find noticeable cytotoxicity. Confocal fluorescent microscopy revealed that CO-NPs efficiently increased the nuclear condensation and chromatin damage in propidium iodide staining; meanwhile, there was decreased mitochondrial membrane potential in CO-NPs-treated MCF-7 cells. In addition, AO-EB staining confirmed the late apoptotic and apoptotic morphology of cancer cells. Further gene expression analysis confirmed that the upregulation of tumor suppressors, Cdkn1A, Prb, and p53 was significantly increased, and inflammatory traits such as TNF-α and Nf-κb were increased in cancer cells treated with CO-NPs. Apoptotic stimulators such as Bax and caspase-3 expression were highly significantly increased, while mdm-2 and Bcl-2 were significantly decreased. Overall, the enhanced cytotoxic potential of the Cinchona officianlis stem bark extract loaded CO-NPs versus free Cinchona officianlis extract might be due to the functional stabilization of bioactive compounds, such as alkaloids, quinine, flavonoids, phenolics, etc., into the iron oxide, providing bioavailability and internalization of cinchona metabolites intracellularly.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3