Abstract
Vanadium dioxide (VO2) has attracted interest from researchers because it undergoes a metal–insulator phase transition (MIT), which is accompanied by a reversible and remarkable change in both electrical and optical properties. VO2 exhibits numerous polymorphs and thus it is essential to control the growth of specific monoclinic VO2 (M) and rutile VO2 (R) phases. In this study, we developed a cost-effective and facile method for preparing VO2 nanorods with a highly crystalline monoclinic phase by one-step hydrothermal synthesis, in which only V2O5 and H2C2O4 are used as raw materials. The phase evolution of VO2 during the hydrothermal process was studied. The obtained VO2 nanorods were thoroughly mixed with fluorocarbon resin and homogeneous emulsifier in an ethanol solution to obtain a VO2 dispersion. To prepare VO2 films, screen printing was performed with a stainless steel screen mesh mask on glasses or fabric substrate. The VO2 coating had good thermochromic performance; the infrared transmittance change was greater than 20% @1.5 μm whilst keeping the visible transmittance greater than 50%. Meanwhile, the polyester base coating on the fabric had an emissivity change of up to 22%, which provides a solution for adaptive IR camouflage.
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献