Synthesis and Characterization of Novel Sprayed Ag-Doped Quaternary Cu2MgSnS4 Thin Film for Antibacterial Application

Author:

Hammoud AmalORCID,Souli Mehdi,Diouani Mohamed Fethi,Alhalaili Badriyah,Vidu RuxandraORCID,Kamoun-Turki Najoua

Abstract

In this work, the effects of silver doping with different Ag/(Ag + Cu) ratios (i.e., 2%, 5% and 10% at.% in the spray solution) on the structural, morphological, optical, electrical and antibacterial properties of Cu2MgSnS4 (CMTS) thin film grown by spray pyrolysis have been studied. The X-ray diffraction (XRD) and selected area electron diffraction (SAED) results have shown that the kesterite phase of CMTS thin films has a maximum crystallite size of about 19.60 nm for 5% Ag/(Ag + Cu). Scanning electron microscopy (SEM) images have shown spherical grain shapes. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) microscopy observations confirmed the intrinsic reticular planes of CMTS thin film with (112) as a preferred orientation and interplanar spacing value of 3.1 Å. The optical properties showed high absorbance and an absorption coefficient of about 104 cm−1 in the visible region with an optical band gap energy of 1.51 eV. Impedance analysis spectroscopy demonstrated good electrical properties of the CMTS film obtained using 5% Ag/(Ag + Cu). The antibacterial activity of the undoped and Ag-doped particles of CMTS obtained using 5% Ag/(Ag + Cu) against different strains of pathogenic bacteria was tested using the agar well diffusion method. These results showed a significant antibacterial activity of the Ag-doped CMTS particle, which was much higher than the undoped CMTS particles. These experimental findings may open new practices for the Ag-doped CMTS compound, especially the one obtained using 5% Ag/(Ag + Cu), in antibacterial application.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3