Abstract
The green synthesis of titanium dioxide nanoparticles was performed using the sol-gel method for their use in the modification of several agricultural biomasses (orange, lemon, cassava and yam peels) to evaluate the enhancement of adsorption capacity. To this end, different particle sizes (0.355, 0.5 and 1.0 mm) and initial solution pHs (2, 4 and 6) were assessed to identify the optimum conditions for further experimentation with the selected lignocellulosic materials. The defined conditions reporting the highest removal yields were used to perform adsorption experiments for chemically modified biosorbents. The biomaterials were characterized via elemental and bromatological analysis in order to quantify their composition. After the incorporation of TiO2 nanoparticles, the resulting biosorbents were characterized via FT-IR and SEM techniques. The results revealed that the pH solution significantly affects the nickel ion uptake, reaching the best performance at pH = 6 for all biomasses. Unmodified biomasses shown adsorption capacities between 18–20 mg/g. For chemically modified with TiO2 orange peels and yam peels biomass, the increase in adsorption capacities was 21.3 and 18.01 mg/g, respectively. For cassava and lemon peels chemically modified, it was found the increasing in adsorption capacities with values of 21.3 and 18.01 mg/g, respectively, which suggested that the incorporation of nanoparticles enhances adsorption capacities.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献