Akt, IL-4, and STAT Proteins Play Distinct Roles in Prostaglandin Production in Human Follicular Dendritic Cell-like Cells

Author:

Jeong Jihye1,Choe Jongseon1ORCID

Affiliation:

1. Interdisciplinary Graduate Program in BIT Medical Convergence, Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

This study aimed to explore the role of Akt protein in the induction and inhibition of prostaglandin (PG) in human follicular dendritic cell (FDC)-like cells. FDC-like cells and B cells were isolated from human tonsils. PG production was assessed using enzyme immunoassay, while the upstream cyclooxygenase-2 (COX-2) protein levels were measured using immunoblotting with FDC-like cells transfected with Akt siRNA to analyze the impact of Akt knockdown. The COX-2 expression and PG production induced with IL-1β were significantly increased by Akt knockdown. However, IL-1β did not significantly alter either total or phosphorylated Akt protein levels. Akt knockdown resulted in the augmentation of COX-2 expression induced by B cells, although the addition of B cells did not significantly modulate both total and phosphorylated Akt proteins. In contrast, IL-4 specifically exhibited a potent inhibitory effect on COX-2 protein induction and PG production via STAT6. The inhibitory activity of IL-4 was not hampered by Akt knockdown. Interestingly, COX-2 expression levels induced with IL-1β were markedly modulated with STAT1 and STAT3 knockdown. STAT1 silencing resulted in further augmentation of COX-2, whereas STAT3 silencing prohibited IL-1β from stimulating COX-2 expression. The current results suggest that Akt, IL-4, and STAT1 play inhibitory roles in PG production in FDC-like cells and expand our knowledge of the immune inflammatory milieu.

Funder

Ministry of Science and ICT of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3