Graphdiyne and Nitrogen-Doped Graphdiyne Nanotubes as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction

Author:

Liu Tongchang1,Hao Xinmeng1,Liu Jiaqi1,Zhang Pengfei1,Chang Jiaming1,Shang Hong1,Liu Xuanhe1

Affiliation:

1. School of Science, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

Electrocatalysts with high efficiency and low cost are always urgently needed for oxygen reduction reaction (ORR). As a new carbon allotrope, graphdiyne (GDY) has received much attention due to its unique chemical structure containing sp- and sp2-hybridized carbons, and intrinsic electrochemical activity ascribed to its inherent conductivity. Herein, we prepared two graphdiyne materials named GDY nanotube and nitrogen-doped GDY (NGDY) nanotube via cross-coupling reactions on the surface of Cu nanowires. As metal-free catalysts, their electrocatalytic activities for ORR were demonstrated. The results showed that the NGDY nanotube presents more excellent electrochemical performance than that of the GDY nanotube, including more positive potential and faster kinetics and charge transfer process. The improvement can be ascribed to the greater number of structural electrocatalytic active sites from nitrogen atoms as well as the hollow nanotube morphology, which is beneficial to the adsorption of oxygen and acceleration of the catalytic reaction. This work helps develop high-quality graphdiyne-based electrocatalysts with well-defined chemical structures and morphologies for various electrochemical reactions.

Funder

China National University Student Innovation & Entrepreneurship Development Program

National Nature Science Foundation of China

China University of Geosciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3