Anti-Biofilm Activity of Cocultimycin A against Candida albicans

Author:

Zhu Xiaohong1,Wang Anqi1,Zheng Yifan1,Li Dan1,Wei Yuanjuan1,Gan Maoluo1ORCID,Li Yan1,Si Shuyi1

Affiliation:

1. Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Abstract

Candida albicans (C. albicans), the most common fungal pathogen, has the ability to form a biofilm, leading to enhanced virulence and antibiotic resistance. Cocultimycin A, a novel antifungal antibiotic isolated from the co-culture of two marine fungi, exhibited a potent inhibitory effect on planktonic C. albicans cells. This study aimed to evaluate the anti-biofilm activity of cocultimycin A against C. albicans and explore its underlying mechanism. Crystal violet staining showed that cocultimycin A remarkably inhibited biofilm formation in a dose-dependent manner and disrupted mature biofilms at higher concentrations. However, the metabolic activity of mature biofilms treated with lower concentrations of cocultimycin A significantly decreased when using the XTT reduction method. Cocultimycin A could inhibit yeast-to-hypha transition and mycelium formation of C. albicans colonies, which was observed through the use of a light microscope. Scanning electron microscopy revealed that biofilms treated with cocultimycin A were disrupted, yeast cells increased, and hypha cells decreased and significantly shortened. The adhesive ability of C. albicans cells treated with cocultimycin A to the medium and HOEC cells significantly decreased. Through the use of a qRT-PCR assay, the expression of multiple genes related to adhesion, hyphal formation and cell membrane changes in relation to biofilm cells treated with cocultimycin A. All these results suggested that cocultimycin A may be considered a potential novel molecule for treating and preventing biofilm-related C. albicans infections.

Funder

National Natural Science Foundation of China

CAMS Initiative for Innovative Medicine

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3