Integrative Metabolomic and Transcriptomic Landscape during Akebia trifoliata Fruit Ripening and Cracking

Author:

Jiang Yongli12ORCID,Du Yanlin1,Chen Chongyang1,Wang Danfeng2,Zhong Yu2,Deng Yun2ORCID

Affiliation:

1. Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Akebia trifoliata fruit is prone to crack after ripening, but little is known about the mechanism underlying the cracking process. This study integrated transcriptomic and metabolomic data, revealing significant changes in 398 metabolites and 8414 genes during ripening and cracking, mainly impacting cell-wall metabolism. Multi-omics joint analysis indicated that genes related to polygalacturonase, pectate lyase, α-amylase, and glycogen phosphorylase were up-regulated after cracking, degrading cell wall and starch. Concurrently, diminished photosynthetic metabolism and heightened phenylpropanoid metabolism suggested alterations in cuticle structure, potentially impacting cell-wall robustness. Numerous auxin and abscisic acid signaling-related genes were expressed, and we assume that they contributed to the promoting peel growth. These alterations collectively might compromise peel strength and elevate expanding pressure, potentially leading to A. trifoliata cracking. Transcription factors, predominantly ethylene response factors and helix-loop-helix family members, appeared to regulate these metabolic shifts. These findings provide valuable insights into A. trifoliata cracking mechanisms; however, direct experimental validation of these assumptions is necessary to strengthen these conclusions and expedite their commercial utilization.

Funder

Science and Technology Major Project of Yunnan Province

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3