Analysis of Chromatin Accessibility Changes Induced by BMMC Recognition of Foot-and-Mouth Disease Virus-like Particles through ATAC-seq

Author:

Han Weijian1,Zhang Junjuan1,Li Mingzhu1,An Manxin1,Li Limin1ORCID

Affiliation:

1. College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China

Abstract

Mast cells can recognize foot-and-mouth disease virus-like particles (FMDV-VLPs) via mannose receptors (MRs) to produce differentially expressed cytokines. The regulatory role of chromatin accessibility in this process is unclear. Bone marrow-derived mast cells (BMMCs) were cultured, and an assay of transposase-accessible chromatin sequencing (ATAC-seq) was applied to demonstrate the regulation of chromatin accessibility in response to the BMMCs’ recognition of FMDV-VLPs. A pathway enrichment analysis showed that peaks associated with the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), and other signaling pathways, especially the NF-κB pathway, were involved in the BMMCs’ recognition of VLPs. Moreover, transcription factors including SP1, NRF1, AP1, GATA3, microphthalmia-associated transcription factor (MITF), and NF-κB-p65 may bind to the motifs with altered chromatin accessibility to regulate gene transcription. Furthermore, the expression of NF-κB, interleukin (IL)-9, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the BMMCs of the VLP group increased compared with that of the BMMCs in the control group, whereas the expression of IL-10 did not differ significantly between groups. After inhibiting the MRs, the expression of NF-κB, IL-9, TNF-α, and IFN-γ decreased significantly, whereas the expression of IL-10 increased. The expression of MAPK and IL-6 showed no significant change after MR inhibition. This study demonstrated that MRs expressed on BMMCs can affect the NF-κB pathway by changing chromatin accessibility to regulate the transcription of specific cytokines, ultimately leading to the differential expression of cytokines. These data provide a theoretical basis and new ideas for the development of a novel vaccine for FMD.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3