Melatonin Inhibits Testosterone Synthesis in Rooster Leydig Cells by Targeting CXCL14 through miR-7481-3p

Author:

Xu Haoran12,Pu Jingxin12,Teng Yunkun12,Zhu Qingyu12,Guo Lewei12,Zhao Jing12,Ding He12,Fang Yi12,Ma Xin12,Liu Hongyu12,Guo Jing12,Lu Wenfa12,Wang Jun12

Affiliation:

1. Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China

2. Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China

Abstract

Melatonin has been proved to be involved in testosterone synthesis, but whether melatonin participates in testosterone synthesis by regulating miRNA in Leydig cells is still unclear. The purpose of this study is to clarify the mechanism of melatonin on Leydig cells testosterone synthesis from the perspective of miRNA. Our results showed that melatonin could significantly inhibit testosterone synthesis in rooster Leydig cells. miR-7481-3p and CXCL14 were selected as the target of melatonin based on RNA-seq and miRNA sequencing. The results of dual-luciferase reporter assays showed that miR-7481-3p targeted the 3′-UTR of CXCL14. The overexpression of miR-7481-3p significantly inhibited the expression of CXCL14 and restored the inhibitory role of melatonin testosterone synthesis and the expression of StAR, CYP11A1, and 3β-HSD in rooster Leydig cells. Similarly, interference with CXCL14 could reverse the inhibitory effect of melatonin on the level of testosterone synthesis and the expression of StAR, CYP11A1, and 3β-HSD in rooster Leydig cells. The RNA-seq results showed that melatonin could activate the PI3K/AKT signal pathway. Interference with CXCL14 significantly inhibited the phosphorylation level of PI3K and AKT, and the inhibited PI3K/AKT signal pathway could reverse the inhibitory effect of CXCL14 on testosterone synthesis and the expression of StAR, CYP11A1 and 3β-HSD in rooster Leydig cells. Our results indicated that melatonin inhibits testosterone synthesis by targeting miR-7481-3p/CXCL14 and inhibiting the PI3K/AKT pathway.

Funder

Leading talents and teams of young and middle-aged scientific and technological innovation in Jilin Province: Innovation Team of Efficient Breeding and Healthy Breeding of Cattle

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Avian testicular structure, function, and regulation;Hormones and Reproduction of Vertebrates, Volume 4;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3