SMALL PLANT AND ORGAN 1 (SPO1) Encoding a Cellulose Synthase-like Protein D4 (OsCSLD4) Is an Important Regulator for Plant Architecture and Organ Size in Rice

Author:

Qiao Lei12,Wu Qilong1,Yuan Liuzhen1,Huang Xudong1,Yang Yutao1,Li Qinying1,Shahzad Nida1,Li Haifeng2,Li Wenqiang1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China

2. College of Agronomy, Northwest A&F University, Yangling 712100, China

Abstract

Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference86 articles.

1. Genetic and Molecular Bases of Rice Yield;Xing;Annu. Rev. Plant Biol.,2010

2. Plant architecture;Reinhardt;EMBO Rep.,2002

3. Genes controlling plant architecture;Wang;Curr. Opin. Biotechnol.,2006

4. Breuninger, H., and Lenhard, M. (2010). Plant Development, Elsevier.

5. Li, W., Yang, Z., Yao, J., Li, J., Song, W., and Yang, X. (2018). Cellulose synthase-like D1 controls organ size in maize. BMC Plant Biol., 18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3