Pyrrolizidine Alkaloids—Pros and Cons for Pharmaceutical and Medical Applications

Author:

Jayawickreme Kavindi1,Świstak Dawid1,Ozimek Ewa2ORCID,Reszczyńska Emilia34,Rysiak Anna5,Makuch-Kocka Anna6ORCID,Hanaka Agnieszka4ORCID

Affiliation:

1. Student Scientific Club of Phytochemists, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland

2. Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland

3. Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland

4. Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland

5. Department of Botany, Mycology, and Ecology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland

6. Department of Pharmacology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080 Lublin, Poland

Abstract

Heterocyclic organic compounds named pyrrolizidine alkaloids (PAs) belong to a group of alkaloids and are synthesized by either plants or microorganisms. Therefore, they are naturally occurring secondary metabolites. They are found in species applied in the pharmaceutical and food industries, thus a thorough knowledge of their pharmacological properties and toxicology to humans is of great importance for their further safe employment. This review is original because it synthesizes knowledge of plant and microbial PAs, which is unusual in the scientific literature. We have focused on the Boraginaceae family, which is unique due to the exceptional richness and diversity of its PAs in plant species. We have also presented the microbial sources of PAs, both from fungi and bacteria. The structure and metabolism of PAs have been discussed. Our main aim was to summarize the effects of PAs on humans, including both negative, toxic ones, mainly concerning hepatotoxicity and carcinogenicity, as well as potentially positive ones for pharmacological and medical applications. We have collected the results of studies on the anticancer activity of PAs from plant and microbial sources (mainly Streptomyces strains) and on the antimicrobial activity of PAs on different strains of microorganisms (bacteria and fungi). Finally, we have suggested potential applications and future perspectives.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3