Harnessing CRISPR/Cas9 for Enhanced Disease Resistance in Hot Peppers: A Comparative Study on CaMLO2-Gene-Editing Efficiency across Six Cultivars

Author:

Park Jae-Hyeong1,Kim Hyeran12

Affiliation:

1. Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea

2. Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

The Capsicum annuum Mildew Locus O (CaMLO2) gene is vital for plant defense responses against fungal pathogens like powdery mildew, a significant threat to greenhouse pepper crops. Recent advancements in genome editing, particularly using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, have unlocked unprecedented opportunities for modifying disease-resistant genes and improving crop characteristics. However, the application of CRISPR technology in pepper cultivars has been limited, and the regeneration process remains challenging. This study addresses these limitations by investigating the feasibility of using the validated CaMLO2 genetic scissors system in six commercial hot pepper cultivars. We assessed the gene-editing efficiency of the previously reported high-efficiency Cas9/CaMLO2single-guide RNA (sgRNA)1-ribonucleoprotein (RNP) and the low-efficiency Cas9/CaMLO2sgRNA2-RNP systems by extending their application from the bell pepper ‘Dempsey’ and the hot pepper ‘CM334’ to six commercial hot pepper cultivars. Across the six cultivars, CaMLO2sgRNA1 demonstrated an editing efficiency ranging from 6.3 to 17.7%, whereas CaMLO2sgRNA2 exhibited no editing efficiency, highlighting the superior efficacy of sgRNA1. These findings indicate the potential of utilizing the verified Cas9/CaMLO2sgRNA1-RNP system to achieve efficient gene editing at the CaMLO2 locus in different Capsicum annuum cultivars regardless of their cultivar genotypes. This study provides an efficacious genome-editing tool for developing improved pepper cultivars with CaMLO2-mediated enhanced disease resistance.

Funder

Rural Development Administration (RDA), Republic of Korea

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3