Genome-Wide Analysis of Flax (Linum usitatissimum L.) Growth-Regulating Factor (GRF) Transcription Factors

Author:

Lu Jianyu1,Wang Zhenhui1ORCID,Li Jinxi1,Zhao Qian1,Qi Fan1,Wang Fu1,Xiaoyang Chunxiao1,Tan Guofei1ORCID,Wu Hanlu1,Deyholos Michael K.2ORCID,Wang Ningning1ORCID,Liu Yingnan3,Zhang Jian12ORCID

Affiliation:

1. Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China

2. Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V5K1K5, Canada

3. Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin 150040, China

Abstract

Flax is an important cash crop globally with a variety of commercial uses. It has been widely used for fiber, oil, nutrition, feed and in composite materials. Growth regulatory factor (GRF) is a transcription factor family unique to plants, and is involved in regulating many processes of growth and development. Bioinformatics analysis of the GRF family in flax predicted 17 LuGRF genes, which all contained the characteristic QLQ and WRC domains. Equally, 15 of 17 LuGRFs (88%) are predicted to be regulated by lus-miR396 miRNA. Phylogenetic analysis of GRFs from flax and several other well-characterized species defined five clades; LuGRF genes were found in four clades. Most LuGRF gene promoters contained cis-regulatory elements known to be responsive to hormones and stress. The chromosomal locations and collinearity of LuGRF genes were also analyzed. The three-dimensional structure of LuGRF proteins was predicted using homology modeling. The transcript expression data indicated that most LuGRF family members were highly expressed in flax fruit and embryos, whereas LuGRF3, LuGRF12 and LuGRF16 were enriched in response to salt stress. Real-time quantitative fluorescent PCR (qRT-PCR) showed that both LuGRF1 and LuGRF11 were up-regulated under ABA and MeJA stimuli, indicating that these genes were involved in defense. LuGRF1 was demonstrated to be localized to the nucleus as expected for a transcription factor. These results provide a basis for further exploration of the molecular mechanism of LuGRF gene function and obtaining improved flax breeding lines.

Funder

Jilin Agricultural University high-level researcher

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3