AsHC 360 Exposure Influence on Epileptiform Discharges in Hippocampus of Infantile Male Rats In Vitro

Author:

Dong Lei1,Zhao Ling1,Tian Lei1ORCID,Zhao Wenjun1,Xiong Chan2ORCID,Zheng Yu1ORCID

Affiliation:

1. School of Life Sciences, Tiangong University, Tianjin 300387, China

2. Institute of Chemistry, NAWI Graz, University of Graz, Graz 8010, Austria

Abstract

Arsenic-containing hydrocarbons (AsHCs) are typical arsenolipids found in various marine organisms. They can penetrate the blood–brain barrier, specifically affecting synaptic plasticity and the learning and memory ability of hippocampal neurons. Temporal lobe epilepsy often occurs in the hippocampus. Thus, the possible influence of AsHCs exposure to temporal lobe epilepsy garnered attention. The present study investigated the effects of epileptiform discharges (EDs) signals introduced by low-magnesium ACSF in the hippocampus of infantile male rats in vitro, using electrophysiological techniques with multi-electrode arrays under AsHC 360 exposure. In our study of the effects of AsHC 360 on EDs signals, we found that inter-ictal discharges (IIDs) were not significantly impacted. When AsHC 360 was removed, any minor effects observed were reversed. However, when we examined the impact of AsHC 360 on ictal discharges (IDs), distinct patterns emerged based on the concentration levels. For low-concentration groups (5, 20, 60 μg As L−1), both the frequency and duration effects on IDs returned to normal post-elimination of AsHC 360. However, this recovery was not evident for concentrations of 100 μg As L−1 or higher. IDs were only observed in EDs signals during exposures to AsHC 360 concentrations up to 60 μg As L−1. In these conditions, ID frequencies significantly enhanced with the increased of AsHC 360 concentration. At high concentrations of AsHC 360 (≥100 μg As L−1), the transition from IIDs or pre-ictal discharges (PIDs) to IDs was notably inhibited. Additional study on co-exposure of AsHC 360 (100 μg As L−1) and agonist (10 nM (S)-(-)-Bay-K-8644) indicated that the regulation of EDs signals under AsHC 360 exposure could be due to directly interference with the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) expression which influences the binding of excitatory glutamate neurotransmitter to AMPAR. The results suggest that EDs activities in the hippocampus of infantile Sprague Dawley rats are concentration-dependent on AsHC 360 exposure. Thus, it provides a basis for the seafood intake with AsHCs for epileptic patients and those with potential seizures.

Funder

National Natural Science Foundation of China

Austrian Science Fund

National Science Foundation of Tianjin

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3