Short-Term and Long-Term Effects after Exposure to Ionizing Radiation and Visible Light on Retina and Retinal Pigment Epithelium of Mouse Eye

Author:

Feldman Tatiana123ORCID,Yakovleva Marina23ORCID,Utina Dina4,Ostrovsky Mikhail123

Affiliation:

1. Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119234, Russia

2. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia

3. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia

4. Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980, Russia

Abstract

A comparative in vivo study of the effects of ionizing radiation (accelerated protons) and visible light (400–700 nm) on the retina and retinal pigment epithelium (RPE) of the mouse eye was carried out. Using the methods of fluorescence spectroscopy and high-performance liquid chromatography (HPLC), we analyzed the relative composition of retinoids in chloroform extracts obtained from the retinas and RPEs immediately after exposure of animals to various types of radiation and 4.5 months after they were exposed and maintained under standard conditions throughout the period. The fluorescent properties of chloroform extracts were shown to change upon exposure to various types of radiation. This fact indicates the accumulation of retinoid oxidation and degradation products in the retina and RPE. The data from fluorescence and HPLC analyses of retinoids indicate that when exposed to ionizing radiation, retinoid oxidation processes similar to photooxidation occur. Both ionizing radiation and high-intensity visible light have been shown to be characterized by long-term effects. The action of any type of radiation is assumed to activate the mechanism of enhanced reactive oxygen species production, resulting in a long-term damaging effect.

Funder

The Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3