Connexins Control Glial Inflammation in Various Neurological Diseases

Author:

Yamasaki Ryo1ORCID

Affiliation:

1. Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan

Abstract

Connexins (Cxs) form gap junctions through homotypic/heterotypic oligomerization. Cxs are initially synthesized in the endoplasmic reticulum, then assembled as hexamers in the Golgi apparatus before being integrated into the cell membrane as hemichannels. These hemichannels remain closed until they combine to create gap junctions, directly connecting neighboring cells. Changes in the intracellular or extracellular environment are believed to trigger the opening of hemichannels, creating a passage between the inside and outside of the cell. The size of the channel pore depends on the Cx isoform and cellular context-specific effects such as posttranslational modifications. Hemichannels allow various bioactive molecules, under ~1 kDa, to move in and out of the host cell in the direction of the electrochemical gradient. In this review, we explore the fundamental roles of Cxs and their clinical implications in various neurological dysfunctions, including hereditary diseases, ischemic brain disorders, degenerative conditions, demyelinating disorders, and psychiatric illnesses. The influence of Cxs on the pathomechanisms of different neurological disorders varies depending on the circumstances. Hemichannels are hypothesized to contribute to proinflammatory effects by releasing ATP, adenosine, glutamate, and other bioactive molecules, leading to neuroglial inflammation. Modulating Cxs’ hemichannels has emerged as a promising therapeutic approach.

Funder

JSPS KAKENHI Grants-in-Aid for Scientific Research

Japan Society for the Promotion of Science

Research and Development Grants for Dementia

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3