Channel Formation in Cry Toxins: An Alphafold-2 Perspective

Author:

Torres Jaume1ORCID,Surya Wahyu1ORCID,Boonserm Panadda2ORCID

Affiliation:

1. School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore

2. Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand

Abstract

Bacillus thuringiensis (Bt) strains produce pore-forming toxins (PFTs) that attack insect pests. Information for pre-pore and pore structures of some of these Bt toxins is available. However, for the three-domain (I-III) crystal (Cry) toxins, the most used Bt toxins in pest control, this crucial information is still missing. In these Cry toxins, biochemical data have shown that 7-helix domain I is involved in insertion in membranes, oligomerization and formation of a channel lined mainly by helix α4, whereas helices α1 to α3 seem to have a dynamic role during insertion. In the case of Cry1Aa, toxic against Manduca sexta larvae, a tetrameric oligomer seems to precede membrane insertion. Given the experimental difficulty in the elucidation of the membrane insertion steps, we used Alphafold-2 (AF2) to shed light on possible oligomeric structural intermediates in the membrane insertion of this toxin. AF2 very accurately (<1 Å RMSD) predicted the crystal monomeric and trimeric structures of Cry1Aa and Cry4Ba. The prediction of a tetramer of Cry1Aa, but not Cry4Ba, produced an ‘extended model’ where domain I helices α3 and α2b form a continuous helix and where hydrophobic helices α1 and α2 cluster at the tip of the bundle. We hypothesize that this represents an intermediate that binds the membrane and precedes α4/α5 hairpin insertion, together with helices α6 and α7. Another Cry1Aa tetrameric model was predicted after deleting helices α1 to α3, where domain I produced a central cavity consistent with an ion channel, lined by polar and charged residues in helix α4. We propose that this second model corresponds to the ‘membrane-inserted’ structure. AF2 also predicted larger α4/α5 hairpin n-mers (14 ≤n ≤ 17) with high confidence, which formed even larger (~5 nm) pores. The plausibility of these models is discussed in the context of available experimental data and current paradigms.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3