A Detection and Tracking Method Based on Heterogeneous Multi-Sensor Fusion for Unmanned Mining Trucks

Author:

Liu Haitao,Pan Wenbo,Hu Yunqing,Li Cheng,Yuan Xiwen,Long Teng

Abstract

There exist many difficulties in environmental perception in transportation at open-pit mines, such as unpaved roads, dusty environments, and high requirements for the detection and tracking stability of small irregular obstacles. In order to solve the above problems, a new multi-target detection and tracking method is proposed based on the fusion of Lidar and millimeter-wave radar. It advances a secondary segmentation algorithm suitable for open-pit mine production scenarios to improve the detection distance and accuracy of small irregular obstacles on unpaved roads. In addition, the paper also proposes an adaptive heterogeneous multi-source fusion strategy of filtering dust, which can significantly improve the detection and tracking ability of the perception system for various targets in the dust environment by adaptively adjusting the confidence of the output target. Finally, the test results in the open-pit mine show that the method can stably detect obstacles with a size of 30–40 cm at 60 m in front of the mining truck, and effectively filter out false alarms of concentration dust, which proves the reliability of the method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Unmanned technology for mining trucks;Yuan;Min. Equip.,2013

2. The Big Picture: An Overview Approach to Surface Mining;Widdififield;Min. Eng.,2016

3. Two-stage static/dynamic environment modeling using voxel representation;Asvadi,2016

4. 3D Lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes

5. Unsupervised obstacle detection in driving environments using deep-learning-based stereovision

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3