An Analysis into Physical and Virtual Power Draw Characteristics of Embedded Wireless Sensor Network Devices under DoS and RPL-Based Attacks

Author:

Przybocki Patryk1ORCID,Vassilakis Vassilios G.1ORCID

Affiliation:

1. Department of Computer Science, University of York, York YO10 5GH, UK

Abstract

Currently, within the world, cybercrime is becoming increasingly rampant—often targeting civil infrastructure like power stations and other critical systems. A trend that is being noticed with these attacks is their increased use of embedded devices in denial-of-service (DoS) attacks. This creates a substantial risk to systems and infrastructures worldwide. Threats to embedded devices can be significant, and network stability and reliability can suffer, mainly through the risk of battery draining or complete system hang. This paper investigates such consequences through simulations of excessive loads, by staging attacks on embedded devices. Experimentation within Contiki OS focused on loads placed on physical and virtualised wireless sensor network (WSN) embedded devices by launching DoS attacks and by exploiting the Routing Protocol for Low Power and Lossy Networks (RPL). Results from these experiments were based on the metric of power draw, mainly the percentage increase over baseline and the pattern of it. The physical study relied on the output of the inline power analyser and the virtual study relied on the output of a Cooja plugin called PowerTracker. This involved experiments on both physical and virtual devices, and analysis of the power draws characteristics of WSN devices with a focus on embedded Linux platforms and Contiki OS. Experimental results provide evidence that peak power draining occurs with a malicious-node-to-sensor device ratio of 13-to-1. Results show a decline in power usage with a more expansive 16-sensor network after modelling and simulating a growing sensor network within the Cooja simulator.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. Sujay-Vailshery, L. (2023, January 20). Global Number of Connected IoT Devices 2015–2025, Statista. Available online: https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/.

2. A comprehensive survey on enhancements and limitations of the RPL protocol: A focus on the objective function;Lamaazi;Ad Hoc Netw.,2020

3. Lim, C. (2019). A survey on congestion control for RPL-based wireless sensor networks. Sensors, 19.

4. Load balancing for RPL-based Internet of Things: A review;Pancaroglu;Ad Hoc Netw.,2021

5. Security of RPL based 6LoWPAN networks in the Internet of things: A review;Verma;IEEE Sens. J.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3