Simulation on the Separation of Breast Cancer Cells within a Dual-Patterned End Microfluidic Device

Author:

Dutta Diganta1,Palmer Xavier2,Lim Jung Yul3,Chandra Surabhi4ORCID

Affiliation:

1. Department of Physics, Astronomy, and Engineering, University of Nebraska at Kearney, Kearney, NE 68849, USA

2. Biomedical Engineering Institute, Old Dominion University, Norfolk, VA 23529, USA

3. Department of Mechanical and Materials Engineering, University of Nebraska at Lincoln, Lincoln, NE 68588, USA

4. Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA

Abstract

Microfluidic devices have long been useful for both the modeling and diagnostics of numerous diseases. In the past 20 years, they have been increasingly adopted for helping to study those in the family of breast cancer through characterizing breast cancer cells and advancing treatment research in portable and replicable formats. This paper adds to the body of work concerning cancer-focused microfluidics by proposing a simulation of a hypothetical bi-ended three-pronged device with a single channel and 16 electrodes with 8 pairs under different voltage and frequency regimes using COMSOL. Further, a study was conducted to examine the frequencies most effective for ACEO to separate cancer cells and accompanying particles. The study revealed that the frequency of EF has a more significant impact on the separation of particles than the inlet velocity. Inlet velocity variations while holding the frequency of EF constant resulted in a consistent trend showing a direct proportionality between inlet velocity and net velocity. These findings suggest that optimizing the frequency of EF could lead to more effective particle separation and targeted therapeutic interventions for breast cancer. This study hopefully will help to create targeted therapeutic interventions by bridging the disparity between in vitro and in vivo models.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3