Numerical Study of Laminar Flow and Vortex-Induced Vibration on Cylinder Subjects to Free and Forced Oscillation at Low Reynolds Numbers

Author:

Al Manthari M. S.1ORCID,Azeez Carlton1,Sankar M.1ORCID,Pushpa B. V.2ORCID

Affiliation:

1. College of Computing and Information Sciences, University of Technology and Applied Sciences, Ibri 516, Oman

2. College of Computing and Information Sciences, University of Technology and Applied Sciences, Nizwa 611, Oman

Abstract

In this study, we aimed to numerically investigate the 2D laminar flow over a cylindrical body and performed vortex-induced vibration analyses on a circular cylinder of unit radius placed in a channel, with the cylinder assumed to be fixed. The cases of a cylinder under forced oscillation and three different scenarios of a freely oscillating cylinder were analyzed. The fluid domain dynamics were governed by the incompressible Navier–Stokes equations; however, the structural field was described using nonlinear elastodynamic equations. Fluid and solid domains were discretized with the finite volume method (FVM) in space and time. Predictions of hydrodynamic forces, namely lift and drag terms, were determined for each scenario. An increase in the Reynolds number caused an exponential increment in the lift force. In the case of a stabilized flow, the collective decrease in stiffness and damping decreased the maximal drag and lift factors. Furthermore, it was noticed that the lift factor was minimally altered by variations in damping and stiffness in comparison with the change in the drag factor. From these observations, it appears that the lift factor probably correlates with the cylinder’s structure and fluid properties.

Funder

University of Technology and Applied Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3