Effects of Nozzle Pitch Adaptation in Micro-Scale Liquid Jet Impingement

Author:

Elsinger Georg12,Oprins Herman2,Cherman Vladimir2,Van der Plas Geert2,Beyne Eric2,De Wolf Ingrid12

Affiliation:

1. Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium

2. IMEC, Kapeldreef 75, 3001 Leuven, Belgium

Abstract

With ever increasing integration density of electronic components, the demand for cooling solutions capable of removing the heat generated by such systems grows along with it. It has been shown that a viable answer to this demand is the use of direct liquid jet impingement. While this method can generally be scaled to the cooling of large areas, this is restricted by the necessity of coolant flow rate scaling. In this study, the benefits and restrictions of using increased nozzle pitch to remedy the increasing demand for overall flow rate are investigated. To this end, a model is validated against experimental findings and then used for computational fluid dynamics simulations, exploring effects of the pitch change for micro-scale nozzle diameters and nozzle-to-target spacings. It is found that while this method is efficient in adjusting the tradeoff between total coolant flow rate and pressure drop up to a certain pint, the occurrence of a hydraulic jump in the cavity causes a deterioration of its effect for large nozzle pitches.

Publisher

MDPI AG

Reference18 articles.

1. Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling;Zuckerman;Advances in Heat Transfer,2006

2. A Modern Review on Jet Impingement Heat Transfer Methods;Ekkad;J. Heat Transf.,2021

3. A review of jet impingement cooling;Plant;Int. J. Thermofluids,2023

4. Brunschwiler, T., Rothuizen, H., Fabbri, M., Kloter, U., Michel, B., Bezama, R.J., and Natarajan, G. (June, January 30). Direct Liquid Jet-Impingment Cooling with Micron-Sized Nozzle Array and Distributed Return Architecture. Proceedings of the Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006, ITHERM 2006, San Diego, CA, USA.

5. Overholt, M.R., McCandless, A., Kelly, K.W., Becnel, C.J., and Motakef, S. (2005). ASME 3rd International Conference on Microchannels and Minichannels, Part B Cont’d, ASMEDC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3