Affiliation:
1. Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY 82071, USA
Abstract
Understanding flow behaviors of multiple droplets in complex non-Newtonian fluids is crucial in many science and engineering applications. In this study, a new and improved analytical solution is developed based on the free surface cell model for the flow drag of swamp of Newtonian fluid drops through a power-law fluid. The developed solution is accurate and compares well to the numerical solutions. The improvement involves a new quantification of shear stress boundary condition at the interface and a more consistent approximation in linearizing the power-law fluid flow governing equation. The Newtonian fluid solutions can be reasonably used to linearize the flow governing equation. The approximation of the boundary conditions at the interface, however, has a major impact on the model prediction. The main improvement in the new solution is observed under the condition of comparable viscosities of the Newtonian drops and the outside power-law fluid when the results are sensitive to the interface boundary condition. Under the two extreme conditions of high viscosity ratio (approaching particles) and low ratio (approaching bubbles), the present and existing solutions converge.