Analytical and Computational Modeling of Relaxation Times for Non-Newtonian Fluids

Author:

Wang Sheldon1ORCID,Gao Dalong2,Wester Alexandria1,Beaver Kalyb1,Wyke Kuwin1

Affiliation:

1. McCoy College of Science, Mathematics & Engineering, Midwestern State University, A Member of the Texas Tech University System, Wichita Falls, TX 76308, USA

2. Materials & Manufacturing Systems Research Laboratory, GM R&D, 30470 Harley Earl Blvd., Warren, MI 48092, USA

Abstract

With the availability of efficient and sophisticated finite element analysis (FEA) and computational fluid dynamics (CFD) tools, engineering designs are becoming more software-driven and simulation-based. However, the insights relevant to engineering designs tend to be hidden within massive temporal and spatial data produced with full-fledged three-dimensional simulations. In this paper, we present a preliminary study of the controlled intermittent dispensing of a typical non-Newtonian glue employed in the manufacturing of electric vehicles (EVs). The focus of the study is on the scaling issues derived from different computational and analytical models of interest and importance to the precision control of this non-Newtonian fluid, the lowest dynamic viscosity of which at extremely high shear rates is nearly four million times that of water. More specifically, the abrupt change of the inlet pressure with a constant outlet or ambient pressure and various modeling strategies for transient viscous internal flow with both Newtonian and non-Newtonian fluids are modeled and compared. The analytical and computational results of the developing Newtonian fluid, i.e., water, are derived and computed for validation and verification purposes before the actual applications to the developing non-Newtonian fluid. The concept of a well-established relaxation time before the onset of the steady solution for Newtonian fluids has been validated with both analytical and computational approaches before its expansion and adoption to non-Newtonian fluids with complex rheological behaviors. Other issues attributed to transient operations and precision controls of non-Newtonian fluid delivery involve the pressure pulse and pressure wave propagation within the flexible pipe with compressible or almost incompressible non-Newtonian fluids with a constant pressure at the outlet and a constant mass flow rate or average axial velocity at the inlet, which will be addressed in a separate paper.

Funder

GM Research Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3