Numerical Simulation of Swept-Wing Laminar–Turbulent Flow in the Presence of Two-Dimensional Surface Reliefs

Author:

Boiko Andrey V.1ORCID,Kirilovskiy Stanislav V.1ORCID,Poplavskaya Tatiana V.1ORCID

Affiliation:

1. Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Institutskaya Str. 4/1, 630090 Novosibirsk, Russia

Abstract

Stochastization of boundary-layer flow has a dramatic effect on the aerodynamic characteristics of wings, nacelles, and other objects frequently encountered in practice, resulting in higher skin-friction drag and worse aerodynamic quality. A swept-wing boundary layer encountering a transition to turbulence in the presence of two-dimensional surface reliefs is considered. The relief has the form of strips of a rectangular cross-section oriented parallel to the leading edge and located at different distances from it. The computations are performed for the angle of attack of −5° and an incoming flow velocity of 30 m/s using the ANSYS Fluent 18.0 software together with the author’s LOTRAN 3 package for predicting the laminar–turbulent transition on the basis of the eN-method. New data on distributions of N factors of swept-wing cross-flow instability affected by the surface relief are presented. The data are of practical importance for engineering modeling of the transition. Also, the effectiveness of using the reliefs as a passive method of weakening the cross-flow instability up to 30% to delay the flow stochastization is shown.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3