Numerical Simulation Studies on the Design of the Prosthetic Heart Valves Belly Curves

Author:

Zhou Jingyuan1,Wu Yinkui2,Chen Lu1,Li Tao1,Xiong Yan3,Chen Yu1ORCID

Affiliation:

1. Department of Applied Mechanics, Sichuan University, Chengdu 610065, China

2. Institute of Intelligent Manufacturing, Mianyang Polytechnic, Mianyang 621000, China

3. College of Mechanical Engineering, Sichuan University, Chengdu 610065, China

Abstract

Prosthetic heart valves (PHVs) are employed to replace the diseased native valve as a treatment of severe aortic valve disease. This study aimed to evaluate the effect of curvature of the belly curve on valve performance, so as to support a better comprehension of the relationship between valve design and its performance. Five PHV models with different curvatures of the belly curve were established. Iterative implicit fluid–structure interaction simulations were carried out, analyzing in detail the effect of belly curvature on the geometric orifice area (GOA), coaptation area (CA), regurgitant fraction (RF), leaflet kinematics and stress distribution on the leaflets. Overall, GOA and CA were negatively and positively related to the curvature of the belly curve, respectively. Nevertheless, an excessive increase in curvature can lead to incomplete sealing of free edges of the valve during its closure, which resulted in a decrease in CA and an increase in regurgitation. The moderate curvature of the belly curve contributed to reducing RF and fluttering frequency. Valves with small curvature experienced a significantly higher frequency of fluttering. Furthermore, all stress concentrations intensified with the increase in the curvature of the belly curve. The valve with moderate curvature of the belly curve strikes the best compromise between valve performance parameters, leaflet kinematics and mechanical stress. Considering the different effects of the curvature of belly curve on valve performance parameters, the PHV design with variable curvature of belly curve may be a direction towards valve performance optimization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3