Experimental Investigation of the Effects of Grooves in Fe2O4/Water Nanofluid Pool Boiling

Author:

Rashid Marwa khaleel1,Ali Bashar Mahmood2ORCID,Zorah Mohammed34,Al-Musawi Tariq J.5

Affiliation:

1. Renewable Energy Research Center—Kirkuk, Northern Technical University, Kirkuk 36001, Iraq

2. Department of Construction Engineering and Project Management, College of Engineering, Alnoor University, Mosul 41012, Iraq

3. Department of Computer Technology Engineering, Imam Al-Kadhum College, Baghdad 00964, Iraq

4. Department of Civil Engineering, Mazaya University College, Nasiriyah 64001, Iraq

5. Building and Construction Techniques Engineering Department, College of Engineering and Engineering Techniques, Al-Mustaqbal University, Babylon 51001, Iraq

Abstract

In this study, we systematically explored how changing groove surfaces of iron oxide/water nanofluid could affect the pool boiling heat transfer. We aimed to investigate the effect of three types of grooves, namely rectangular, circular, and triangular, on the boiling heat transfer. The goal was to improve heat transfer performance by consciously changing surface structure. Comparative analyses were conducted with deionized water to provide valuable insights. Notably, the heat transfer coefficient (HTC) exhibited a significant increase in the presence of grooves. For deionized water, the HTC rose by 91.7% and 48.7% on circular and rectangular grooved surfaces, respectively. Surprisingly, the triangular-grooved surface showed a decrease of 32.9% in HTC compared to the flat surface. On the other hand, the performance of the nanofluid displayed intriguing trends. The HTC for the nanofluid diminished by 89.2% and 22.3% on rectangular and triangular grooved surfaces, while the circular-grooved surface exhibited a notable 41.2% increase in HTC. These results underscore the complex interplay between groove geometry, fluid properties, and heat transfer enhancement in nanofluid-based boiling. Hence, we thoroughly examine the underlying mechanisms and elements influencing these observed patterns in this research. The results provide important insights for further developments in this area by shedding light on how surface changes and groove geometry may greatly affect heat transfer in nanofluid-based pool boiling systems.

Funder

Alnoor university

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3