Strategies for Enhancing One-Equation Turbulence Model Predictions Using Gene-Expression Programming

Author:

Di Fabbio Tony1ORCID,Fang Yuan2,Tangermann Eike1,Sandberg Richard D.2ORCID,Klein Markus1ORCID

Affiliation:

1. Department of Aerospace Engineering, Institute of Applied Mathematics and Scientific Computing, University of the Bundeswehr Munich, 85577 Neubiberg, Germany

2. Department of Mechanical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

This paper introduces innovative approaches to enhance and develop one-equation RANS models using gene-expression programming. Two distinct strategies are explored: overcoming the limitations of the Boussinesq hypothesis and formulating a novel one-equation turbulence model that can accurately predict a wide range of turbulent wall-bounded flows. A comparative analysis of these strategies highlights their potential for advancing RANS modeling capabilities. The study employs a single-case CFD-driven machine learning framework, demonstrating that machine-informed models significantly improve predictive accuracy, especially when baseline RANS predictions diverge from established benchmarks. Using existing training data, symbolic regression provides valuable insights into the underlying physics by eliminating ineffective strategies. This highlights the broader significance of machine learning beyond developing turbulence closures for specific cases.

Funder

German Academic Exchange Service

Publisher

MDPI AG

Reference54 articles.

1. Werner, M., Schütte, A., and Weiss, S. (2022, January 3–7). Turbulence Model Effects on the Prediction of Transonic Vortex Interaction on a Multi-Swept Delta Wing. Proceedings of the AIAA SCITECH Forum, San Diego, CA, USA.

2. Experimental and numerical analysis of the aerodynamics and vortex interactions on multi-swept delta wings;Werner;CEAS Aeronaut. J.,2023

3. Investigation of transonic aerodynamics on a triple-delta wing in side slip conditions;Tangermann;CEAS Aeronaut. J.,2022

4. Rumsey, C., and Coleman, G. (2024, August 01). NASA Symposium on Turbulence Modeling: Roadblocks, and the Potential for Machine Learning, 2022, Available online: https://ntrs.nasa.gov/citations/20220015595.

5. Boussinesq, J.V. (1877). Essai sur la Théorie des Eaux Courantes, Impr. Nationale.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3