Characterization of Oscillatory Response of Light-Weight Wind Turbine Rotors under Controlled Gust Pulses

Author:

Ponta Fernando1ORCID,Farrell Alayna1ORCID,Baruah Apurva1ORCID,Yates North1

Affiliation:

1. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA

Abstract

Given the industry-wide trend of continual increases in the size of utility-scale wind turbines, a point will come where reductions will need to be made in terms of the weight of the turbine’s blades to ensure they can be as long as needed without sacrificing structural stability. One such technique that may be considered is to decrease the material used for the shell and spar cap. While this will solve the weight issue, it creates a new one entirely—less material for the shell and spar cap will in turn create blades that are more flexible than what is currently used. This article aims to investigate how the oscillatory response of light-weight wind turbine rotors is affected by these flexibility changes. The object of our study is the Sandia National Lab National Rotor Testbed (SNL-NRT) wind turbine, which the authors investigated in the course of a research project supported by SNL. Using a reduced-order characterization (ROC) technique based on controlled gust pulses, introduced by the authors in a previous work, the aeroelastic dynamics of the NRT’s original baseline blade design and several of its flexible variations were studied via numerical simulations employing the CODEF multiphysics suite. Results for this characterization are presented and analyzed, including a generalization of the ROC of the SNL-NRT oscillatory dynamics to larger machines with geometrical similarity. The latter will prove to be valuable in terms of extrapolating results from the present investigation and other ongoing studies to the scale of current and future commercial machines.

Funder

Sandia National Labs, USA

the ME-EM Department at Michigan Technological University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3