Study on Storm Surge Using Parametric Model with Geographical Characteristics

Author:

Kim Yeon-joongORCID,Kim Tea-woo,Yoon Jong-sung

Abstract

The coastal area of Japan has been damaged yearly by storm surges and flooding disasters in the past, including those associated with typhoons. In addition, the scale of damage is increasing rapidly due to the changing global climate and environment. As disasters due to storm surges become increasingly unpredictable, more measures should be taken to prevent serious damage and casualties. The Japanese government published a hazard map manual in 2015 and obligates the creation of a hazard map based on a parametric model as a measure to reduce high-scale storm surges. Parametric model (typhoon model) accounting for the topographical influences of the surroundings is essential for calculating the wind field of a typhoon. In particular, it is necessary to calculate the wind field using a parametric model in order to simulate a virtual typhoon (the largest typhoon) and to improve the reproducibility. Therefore, in this study, the aim was to establish a hazard map by assuming storm surges of the largest scale and to propose a parametric model that considers the changing shape of typhoons due to topography. The main objectives of this study were to analyze the characteristics of typhoons due to pass through Japan, to develop a parametric model using a combination of Holland’s and Myers’s models that is appropriate for the largest scale of typhoon, and to analyze the parameters of Holland’s model using grid point values (GPVs). Finally, we aimed to propose a method that considers the changing shape of typhoons due to topography. The modeling outcomes of tide levels and storm surge heights show that the reproduced results obtained by the analysis method proposed in this study are more accurate than those obtained using GPVs. In addition, the reproducibility of the proposed model was evaluated showing the high and excellent reproducibility of storm surge height according to the geographic characteristics.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3