The Role of Snowmelt on the Spatio-Temporal Variability of Spring Recharge in a Dolomitic Mountain Group, Italian Alps

Author:

Lucianetti Giorgia,Penna DanieleORCID,Mastrorillo LuciaORCID,Mazza Roberto

Abstract

Springs play a key role in the hydrology of mountain catchments and their water supply has a considerable impact on regional livelihood, biodiversity, tourism, and power generation. However, there is still limited knowledge of how rain and snow contribute to the recharge of Alpine springs. This study presents a four-year investigation of stable isotopes in precipitation and spring water at the scale of a 240 km2 wide dolomitic massif (Dolomites, Italian Alps) with the aim of determining the proportions of snowmelt and rain in spring water and to provide insights on the variability of these contributions in space and time. Four precipitation sampling devices were installed along a strong elevation gradient (from 725 to 2660 m a.s.l.) and nine major springs were monitored seasonally. The monitoring period comprised three extreme weather conditions, i.e., an exceptional snowpack melting period following the highest snowfall in 30 years, an intense precipitation event (386.4 mm of rain in 48 h), and one of the driest periods ever observed in the region. Isotope-based mixing analysis revealed that rain and snowmelt contributions to spring water were noticeably variable, with two main recharge time windows: a late spring–summer snowmelt recharge period with an average snowmelt fraction in spring water up to 94 ± 9%, and a late autumn–early winter period with a rain fraction in spring water up to 68 ± 17%. Overall, during the monitoring period, snowmelt produced high-flow conditions and sustained baseflow more than rain. We argue that the seasonal variability of the snowmelt and rain fractions during the monitoring period reflects the relatively rapid and climate-dependent storage processes occurring in the aquifer. Our results also showed that snowmelt fractions in spring water vary in space around the mountain group as a function of the elevation of their recharge areas. High-altitude recharge areas, above 2500 m a.s.l., are characterized by a predominance of the snowmelt fraction (72% ± 29%) over the rain contribution. Recharge altitudes of approximately 2400 m a.s.l. also show a snow predominance (65 ± 31%), while springs recharged below 2000 m a.s.l. are recharged mostly from rain (snowmelt fraction of 46 ± 26%). Results from this study may be used to develop more accurate water management strategies in mountain catchments and to cope with future climate-change predictions that indicate a decline in the snow volume and duration in Alpine regions.

Funder

Fondazione Cassa Di Risparmio Di Trento E Rovereto

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3