Mechanical and Microstructural Properties of Composite Mortars with Lime, Silica Fume and Rice Husk Ash

Author:

Malathy RamalingamORCID,Shanmugam Ragav,Chung Ill-Min,Kim Seung-Hyun,Prabakaran MayakrishnanORCID

Abstract

A mixture of hydraulic lime and pozzolanic material can be used as a binder in making concrete and mortar for energy-efficient construction purposes. Generally, lime possesses lower strength and higher setting time. By introducing pozzolans in the lime mortar, their cementitious properties could be increased and could compete with the cement mortars. The use of pozzolan-lime binder in mortar reduces the utilisation of cement, and hence reduces the environmental problem originating from cement production. This study mainly deals with the mechanical and microstructural properties of lime and lime composite mortars made up of hydraulic lime, silica fume and rice husk ash. Three composite mortars were made with the following combination such as hydraulic lime-silica fume (LSF), hydraulic lime-rice husk ash (LRA) and hydraulic lime-silica fume-rice husk ash (LSR). Further, their properties were compared with the pure lime mortar. Preliminary investigations were made on the lime reactivity and pozzolanic reactivity tests. It was understood that silica fumes have a (15%) better reactivity than rice husk ash. The introduction of pozzolans in the lime mortar promotes fresh, hardened and microstructural properties. The 28 days’ compressive strength of lime composite mortars achieved more than 16 Mpa, while the lime mortar attained 4 Mpa. The combined effect of pozzolanic reaction, hydration and carbonation in the lime composite mortars achieved four times the strength of lime mortar at 28 days. A high peak of calcium carbonate was detected in lime mortar as a result of carbonation. The well-developed microstructure of calcium silicate hydrate and calcium hydroxide exhibits the formation of hydration products in the lime composite mortars as observed from a scanning electron microscope (SEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD). Similar graphs of Fourier transform infrared spectroscopy (FT-IR) showed the presence of equivalent functional elements in all lime composite mortars.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference56 articles.

1. Experimental investigation on physical and mechanical properties of lime mortar: Effect of organic addition

2. Study on the compressive strength of lime mortar using admixtures;Emayan;Int. J. Innov. Res. Eng. Manag.,2015

3. Study on the Performance Enhancement of Lime Mortar

4. Experimental Study on Lime Mortar using Flyash and Gallnut as Additives;Dhilipkumar;Int. J. Eng. Res. Technol.,2016

5. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3