A Probabilistic Model for Maximum Rainfall Frequency Analysis

Author:

Ciupak MaurycyORCID,Ozga-Zieliński BogdanORCID,Tokarczyk Tamara,Adamowski JanORCID

Abstract

As determining the probability of the exceedance of maximum precipitation over a specified duration is critical to hydrotechnical design, particularly in the context of climate change, a model was developed to perform a frequency analysis of maximum precipitation of a specified duration. The PMAXΤP model (Precipitation MAXimum Time (duration) Probability) harbors a pair of computational modules fulfilling different roles: (i) statistical analysis of precipitation series, and (ii) estimation of maximum precipitation for a specified duration and its probability of exceedance. The input data consist of homogeneous 30-element series of precipitation values for 16 different durations: 5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, and 4320 min, obtained through Annual Maximum Precipitation (AMP) and Peaks-Over-Threshold (POT) approaches. The statistical analysis of the precipitation series includes: (i) detecting outliers using the Grubbs-Beck test; (ii) checking for the random variable’s independence using the Wald-Wolfowitz test and the Anderson serial correlation coefficient test; (iii) checking the random variable’s stationarity using nonparametric tests, e.g., the Kruskal-Wallis test and Spearman rank correlation coefficient test for trends of mean and variance; (iv) identifying the trend of the random variables using correlation and regression analysis, including an evaluation of the form of the trend function; and (v) checking for the internal correlation of the random variables using the Anderson autocorrelation coefficient test. To estimate maximum precipitations of a specified duration and with a specified probability of exceedance, three-parameter theoretical probability distributions were used: a shifted gamma distribution (Pearson type III), a log-normal distribution, a Weibull distribution (Fisher-Tippett type III), a log-gamma distribution, as well as a two-parameter Gumbel distribution. The best distribution was selected by: (i) maximum likelihood estimation of parameters; (ii) tests of the hypothesis of goodness of fit of the theoretical probability distribution function with the empirical distribution using Pearson’s χ2 test; (iii) selection of the best-fitting function within each type according to the criterion of minimum Kolmogorov distance; (iv) selection of the most credible probability distribution function from the set of various types of best-fitting functions according to the Akaike information criterion; and (v) verification of the most credible function using single-dimensional tests of goodness of fit: the Kolmogorov-Smirnov test, the Anderson-Darling test, the Liao-Shimokawa test, and Kuiper’s test. The PMAXTP model was tested on data from two meteorological stations in northern Poland (Chojnice and Bialystok) drawn from a digital database of high-resolution precipitation records for the period of 1986 to 2015, available for 100 stations in Poland (i.e., the Polish Atlas of Rainfall Intensities (PANDa)). Values of maximum precipitation with a specified probability of exceedance obtained from the PMAXTP model were compared with values obtained from the probabilistic Bogdanowicz-Stachý model. The comparative analysis was based on the standard error of fit, graphs of the density function for the probability of exceedance, and estimated quantile errors. The errors of fit were lower for the PMAXTP compared to the Bogdanowicz-Stachý model. For both stations, the smallest errors were obtained for the quantiles determined on the basis of maximum precipitation POT using PMAXTP.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3