Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate

Author:

Mesloub AbdelhakimORCID,Ghosh AritraORCID,Touahmia Mabrouk,Albaqawy Ghazy Abdullah,Noaime Emad,Alsolami Badr M.ORCID

Abstract

This paper presents the impact on energy performance and visual comfort of retrofitting photovoltaic integrated shading devices (PVSDs) to the façade of a prototype office building in a hot desert climate. EnergyPlus™ and the DIVA-for-Rhino© plug-ins were used to perform numerical simulations and parametric analyses examining the energy performance and visual comfort of five configurations, namely: (1) inclined single panel PVSDs, (2) unfilled eggcrate PVSDs, (3) a louvre PVSD of ten slats tilted 30° outward, (4) a louvre PVSD of five slats tilted 30° outward, and (5) an STPV module with 20% transparency which were then compared to a reference office building (ROB) model. The field measurements of an off-grid system at various tilt angles provided an optimum tilt angle of 30°. A 30° tilt was then integrated into some of the PVSD designs. The results revealed that the integration of PVSDs significantly improved overall energy performance and reduced glare. The unfilled eggcrate PVSD did not only have the highest conversion efficiency at ȵ 20% but generated extra energy as well; an essential feature in the hot desert climate of Saudi Arabia.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3