Abstract
The evaluation of storm surge flood risk is vital to disaster management and planning at national, regional and local levels, particularly in coastal areas that are affected more severely by storm surges. The purpose of this paper is to propose a new method that includes two modules for the simulation modeling and risk assessment of coastal flooding. One is a hydrodynamic module for simulating the process of the flood inundation coastal inundation arising from storm surge, which is based on a cellular automata (CA) model. The other is a risk assessment module for quantitatively estimating the economic loss by using the inundation data and land use data. The coastal areas of Pearl River estuary in China were taken as a case study. Simulation results are compared to experimental results from MIKE 21 and depth data from a social-media-based dataset, which demonstrates the effectiveness of the CA model. By analyzing flood risk, the flood area and the direct economic losses predicted are close to the actual case incurred, further demonstrating the computational reliability of the proposed method. Additionally, an automatic risk assessment platform is designed by integrating the two modules in a Geographic Information System (GIS) framework, facilitating a more efficient and faster simulation of coastal flooding. The platform can provide the governments as well as citizens of coastal areas with user-friendly, real-time graphics for coastal flood disaster preparation, warning, response and recovery.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献