System Dynamics Applied to Terraced Agroecosystems: The Case Study of Assaragh (Anti-Atlas Mountains, Morocco)

Author:

Boselli VladimiroORCID,Ouallali AbdessalamORCID,Briak HamzaORCID,Houssni Mhammad,Kassout JalalORCID,El Ouahrani Abdeltif,Michailidi Eleni MariaORCID

Abstract

Terraced agroecosystems (TAS)—apart from being an important cultural heritage element—are considered vital for sustainable water resource management and climate change adaptation measures. However, this traditional form of agriculture, with direct implications in food security at a local scale, has been suffering from abandonment or degradation worldwide. In light of this, the need to fully comprehend the complex linkage of their abandonment with different driving forces is essential. The identification of these dynamics makes possible an appropriate intervention with local initiatives and policies on a larger scale. Therefore, the main aim of this paper is to introduce a comprehensive multidisciplinary framework that maps the dynamics of the investigated TAS’s abandonment, by defining cause–effect relationships on a hydrogeological, ecological and social level, through tools from System Dynamics studies. This methodology is implemented in the case of Assaragh TAS, a traditional oasis agroecosystem in the Moroccan Anti-Atlas, characterized by data scarcity. Through field studies, interviews, questionnaires and freely accessible databases, the TAS’s abandonment, leading to a loss in agrobiodiversity, is linked to social rather than climatic drives. Additionally, measures that can counteract the phenomenon and strengthen the awareness of the risks associated with climate change and food security are proposed.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference112 articles.

1. Caracol, Belize: Evidence of Ancient Maya Agricultural Terraces

2. Ancient agricultural terraces and soils;Sandor,2006

3. Historic terraced vineyards: impressive witnesses of vernacular architecture

4. Espaces en Terrasses et Prévention de Risques Naturels en Cévennes;Martin,2006

5. Drip irrigation uptake in traditional irrigated fields: The edaphological impact

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3