Abstract
Genetic algorithms mimic the process of natural selection in order to solve optimization problems with minimal assumptions and perform well when the objective function has local optima on the search space. These algorithms treat potential solutions to the optimization problem as chromosomes, consisting of genes which undergo biologically-inspired operators to identify a better solution. Hyperparameters or control parameters determine the way these operators are implemented. We created a genetic algorithm in order to fit a DeGroot opinion diffusion model using limited data, making use of selection, blending, crossover, mutation, and survival operators. We adapted the algorithm from a genetic algorithm for design of mixture experiments, but the new algorithm required substantial changes due to model assumptions and the large parameter space relative to the design space. In addition to introducing new hyperparameters, these changes mean the hyperparameter values suggested for the original algorithm cannot be expected to result in optimal performance. To make the algorithm for modeling opinion diffusion more accessible to researchers, we conduct a simulation study investigating hyperparameter values. We find the algorithm is robust to the values selected for most hyperparameters and provide suggestions for initial, if not default, values and recommendations for adjustments based on algorithm output.
Funder
National Institutes of Health
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Reference25 articles.
1. A study on genetic algorithm and its applications;Haldurai;Int. J. Comput. Sci. Eng.,2016
2. Using a Genetic Algorithm to Generate D-optimal Designs for Mixture Experiments
3. A genetic algorithm tutorial
4. Genetic Algorithm: Review and Applicationhttps://ssrn.com/abstract=3529843
5. Genetic algorithms and adaptation;Holland,1984
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献